A post from Berkeley: Virtual Personas for Language Models via an Anthology of Backstories

A post from Berkeley: Virtual Personas for Language Models via an Anthology of Backstories


<!–



We introduce Anthology, a method for conditioning LLMs to representative, consistent, and diverse virtual personas by generating and utilizing naturalistic backstories with rich details of individual values and experience.

–>



We introduce Anthology, a method for conditioning LLMs to representative, consistent, and diverse virtual personas by generating and utilizing naturalistic backstories with rich details of individual values and experience.

What does it mean for large language models (LLMs) to be trained on massive text corpora, collectively produced by millions and billions of distinctive human authors?

In “Language Models as Agent Models”, compelling evidence suggests that recent language models could be considered models of agents: provided with a textual context, LLMs are capable of generating conditional text that represents the characteristics of an agent likely to have produced that context. This suggests that, with appropriate conditioning, LLMs could be guided to approximate the responses of a particular human voice, rather than the mixture of voices that otherwise emerges. If realized, this capability of LLMs would have significant implications for user research and social sciences—conditioned language models as virtual personas of human subjects could serve as cost-effective pilot studies and supporting best practices in human studies, e.g. the Belmont principles of justice and beneficence.

In this work, we introduce Anthology, an approach for steering LLMs to representative, consistent, and diverse virtual personas by providing richly detailed life narratives of individuals as conditioning context to models.

A post from Berkeley: Linguistic Bias in ChatGPT: Language Models Reinforce Dialect Discrimination

A post from Berkeley: Linguistic Bias in ChatGPT: Language Models Reinforce Dialect Discrimination

Sample language model responses to different varieties of English and native speaker reactions.

ChatGPT does amazingly well at communicating with people in English. But whose English?

Only 15% of ChatGPT users are from the US, where Standard American English is the default. But the model is also commonly used in countries and communities where people speak other varieties of English. Over 1 billion people around the world speak varieties such as Indian English, Nigerian English, Irish English, and African-American English.

Speakers of these non-“standard” varieties often face discrimination in the real world. They’ve been told that the way they speak is unprofessional or incorrect, discredited as witnesses, and denied housing–despite extensive research indicating that all language varieties are equally complex and legitimate. Discriminating against the way someone speaks is often a proxy for discriminating against their race, ethnicity, or nationality. What if ChatGPT exacerbates this discrimination?

To answer this question, our recent paper examines how ChatGPT’s behavior changes in response to text in different varieties of English. We found that ChatGPT responses exhibit consistent and pervasive biases against non-“standard” varieties, including increased stereotyping and demeaning content, poorer comprehension, and condescending responses.

A post from Berkeley: Are We Ready for Multi-Image Reasoning? Launching VHs: The Visual Haystacks Benchmark!

A post from Berkeley: Are We Ready for Multi-Image Reasoning? Launching VHs: The Visual Haystacks Benchmark!

Humans excel at processing vast arrays of visual information, a skill that is crucial for achieving artificial general intelligence (AGI). Over the decades, AI researchers have developed Visual Question Answering (VQA) systems to interpret scenes within single images and answer related questions. While recent advancements in foundation models have significantly closed the gap between human and machine visual processing, conventional VQA has been restricted to reason about only single images at a time rather than whole collections of visual data.

This limitation poses challenges in more complex scenarios. Take, for example, the challenges of discerning patterns in collections of medical images, monitoring deforestation through satellite imagery, mapping urban changes using autonomous navigation data, analyzing thematic elements across large art collections, or understanding consumer behavior from retail surveillance footage. Each of these scenarios entails not only visual processing across hundreds or thousands of images but also necessitates cross-image processing of these findings. To address this gap, this project focuses on the “Multi-Image Question Answering” (MIQA) task, which exceeds the reach of traditional VQA systems.

Visual Haystacks: the first “visual-centric” Needle-In-A-Haystack (NIAH) benchmark designed to rigorously evaluate Large Multimodal Models (LMMs) in processing long-context visual information.

A post from Berkeley: TinyAgent: Function Calling at the Edge

A post from Berkeley: TinyAgent: Function Calling at the Edge

The ability of LLMs to execute commands through plain language (e.g. English) has enabled agentic systems that can complete a user query by orchestrating the right set of tools (e.g. ToolFormer, Gorilla). This, along with the recent multi-modal efforts such as the GPT-4o or Gemini-1.5 model, has expanded the realm of possibilities with AI agents. While this is quite exciting, the large model size and computational requirements of these models often requires their inference to be performed on the cloud. This can create several challenges for their widespread adoption. First and foremost, uploading data such as video, audio, or text documents to a third party vendor on the cloud, can result in privacy issues. Second, this requires cloud/Wi-Fi connectivity which is not always possible. For instance, a robot deployed in the real world may not always have a stable connection. Besides that, latency could also be an issue as uploading large amounts of data to the cloud and waiting for the response could slow down response time, resulting in unacceptable time-to-solution. These challenges could be solved if we deploy the LLM models locally at the edge.

A post from Berkeley: Modeling Extremely Large Images with xT

A post from Berkeley: Modeling Extremely Large Images with xT

As computer vision researchers, we believe that every pixel can tell a story. However, there seems to be a writer’s block settling into the field when it comes to dealing with large images. Large images are no longer rare—the cameras we carry in our pockets and those orbiting our planet snap pictures so big and detailed that they stretch our current best models and hardware to their breaking points when handling them. Generally, we face a quadratic increase in memory usage as a function of image size.

Today, we make one of two sub-optimal choices when handling large images: down-sampling or cropping. These two methods incur significant losses in the amount of information and context present in an image. We take another look at these approaches and introduce $x$T, a new framework to model large images end-to-end on contemporary GPUs while effectively aggregating global context with local details.

Architecture for the $x$T framework.